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Electromagnetic Modeling for Microwave
Imaging of Cylindrical Buried
Inhomogeneities

LUC CHOMMELOUX, CHRISTIAN PICHOT, anp JEAN-CHARLES BOLOMEY

Abstract —Many diagnostic techniques in geophysics and civil engineer-
ing are based on the interaction of electromagnetic waves with objects
buried in homogeneous or stratified media. Most of the investigations are
concerned with the detection of buried objects, but a few papers have dealt
with the problem of identifying the objects.

The proposed method is based on the integral representation for a plane
wave incident on a lossy half-space containing a cylindrical object of
arbitrary cross section and electrical properties. The induced current
distribution in the object is obtained from the backscattered field measure-
ment in amplitude and phase. In order to improve the spatial resolution of
the image, the scattered field is measured for different plane wave inci-
dences and frequencies. Results of numerical simulations concerning the
shape and size of the object for different values of soil electromagnetic
parameters are presented in this paper.

I. INTRODUCTION

HE DETECTION and identification of buried inho-

mogeneities using electromagnetic waves are areas of
current importance for geophysical or civil engineering
purposes. An example is the detection of pipes and cables,
some of which may consist entirely of plastic materials.
For such cases, conventional metal detectors fail and one
must employ alternative means of investigation. During
the past few years, some papers have been concerned with
this problem. The possibility of identifying nonmetallic
objects buried at shallow depths below the ground has
been demonstrated using an FM radar in the 2-4-GHz
range [1], a step frequency radar in the 300-700-MHz
range [2], and impulse radars [3]-[5]. The principle of
identifying buried objects by ‘the microwave holographic
imaging method has been established in recent years.
Richards er al. [6] proposed a technique able to produce
images of gas pipes at depths up to 0.25 m below the
ground with a 0.95-GHz radiation, but since the method
employs only a single frequency, it does not provide a high
vertical resolution.

Osumi and Ueno recently developed a microwave imag-
ing method [7] which they applied to underground imaging
[8]. The reflectance of the buried object is reconstructed
from the knowledge of the scattered pulses measured at a
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collection of points in the air, so that both vertical and
horizontal resolutions are improved.

Our approach is based on recent work in medical appli-
cations concerning active microwave and acoustic imaging
[91-[12], [31]. Reconstruction algorithms have been ex-
tended to the case of inhomogeneities embedded in the soil
by taking into account the presence of the air-soil inter-
face and by measuring the backscattered field in air. The
simulation algorithm can be divided into two parts: the
direct problem — simulation of experimental measurement
of the diffracted field, and the inverse problem — recon-
struction of a function characteristic of the inhomogeneity
from knowledge of the diffracted field for different inci-
dences and frequencies.

In this paper, we first present the theoretical formula-
tion upon which the imaging method is based. We then
describe the main steps of the algorithm (direct and in-
verse problem). Finally, numerical results concerning the
size and the shape of the object for different soils are
presented.

II. THEORETICAL FORMULATION

We consider a cylindrical inhomogeneity embedded in a
lossy homogeneous half-space (Fig. 1). Media 1 and 3 are
air and soil, respectively, and are characterized by dielec-
tric permittivity, and conductivity €, 0, and e,, o5, respec-
tively. The object is characterized by €,(x. y), o,(x, y).
The object of arbitrary cross section S(x, y) is illuminated
by an incident plane wave whose electric field vector is
perpendicular to the incidence plane (TM case). For any
point (x, y) inside or outside the object, the total electric
field can be expressed as the sum of the incident field E!
(defined as the field when the object is removed) and
diffracted field

E(x,y)=E}(x.y)+¥(x.y). (1)
Because of the size of the object, whose dimensions are
about one wavelength (resonance domain), an exact formu-
lation of the diffracted field must be employed. Analytical
formulations which are available only in particular cases
(buried circular cylinder [13], for example) have been
rejected.
An exact representation for the z component of the
diffracted field at a point (x, y) (for a time factor e ') is
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Fig. 1. Geometry of the problem in the (x, y) plane.

given by [14]
v (x,») = [ [k ) = K B2 p)
s
-G(x,y;x", y'ydx'dy’ (2)
where
j=1,3,8
(3)

and S is the region y > 0 for which the medium parame-
ters differ from those of the background medium.

G(x, y;x’, y*) is the Green’s function, which can be
interpreted as the electric field created at a point (x, y) by
a line source of current situated at a point (x’, y’).
G(x, y;x’, y’) is given by its integral expression (see Ap-
pendix)

kX (x,y) = w’e,(x, y)po +iwpes,(x, y),

+ 00 i . ~
f ~ - e"h)’e’Ysy'ez"””("‘x') dv
o Vi + Y3
(for y <0)
G(x,y;x',y') = f““’L o ]
(for y’>0) ~ 27,
+ Y3 __‘Yl eﬁa()“")") eZIWV(X_‘X/) dV
Y3t 1
(for y > 0).

4)
We shall note

Gy (x, y;x',y")  (for y <0)

5
Gs(x, y;x", ) (for y>0) ©)

G(x,y;x,y') = {
with

yr=k}—4x*?,  j=1,3andIm(¥,)<0. (6)

Because of the air—soil interface, the incident plane wave
generates two waves: a reflected one (for y <0) and a
transmitted one (for y > 0), in the absence of inhomogene-
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ity:
eikl(xsin01+ycos01)+Reik1(xsin01—ycosﬂl)
1 _ (for y <0)
El(x,y)= Fothassindy +yeosty) (7)
(for y > 0).
We shall note
E!(x,y)+E[(x,y) (fory<0)
El(x,y)= . (8)
El(x,y) (for y > 0)
with
1—n - 2
C1+n C1+n , ‘
cos 8, €+ 0, /@ (Fresnel’s relations)
" cos 6, € tio /w
)
and

k,sin@, =k,cosf;  (Snell’s law).

The reconstruction method is based on the measure of the
diffracted field in the air on a probing line of finite length,
parallel to the air—soil interface. Let us consider the ex-
pression of the diffracted field for y = y; (y, <0) when
the object is illuminated by a plane wave with an electric
field amplitude of 1V/m and an incidence 8, (Fig. 1)

¥(x, 1) =ffsk§Ez’(x’,y')K(x’, y')

-Gy(x, yp3x, ') dx’dy’ (10)
where
xl’ I
1+————¢( y)} (11)

E;(x',y")

represents the normalized polarization currents. By sub-
stituting (4) and (7) into (10) and defining the Fourier
transform of (x, y;) with respect to x as follows:

-1
k3

K(x’,y") = [

b= [ Gepger e (1)

we obtain
ikazTe”"%h
(9. + %)

) k
-e“z”’[(v -2 sin03)x’
2a

1
- E(% + k4 cos 03)y’] dx'dy’.

{L(V’yl)= //;K(x,ayl)

(13)

Since K(x’, y’) is zero outside the object, we can extend
the integral to infinity. In order to define the usual 2-D
Fourier transform, we must consider a real coordinate
system in the Fourier plane; this is realized by the assump-
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tion o, = 0 in the inverse problem. Thus, we can define
: ks
a(v,0,) =v——sinb, ER
27

1 k
B(v,0,) = — — (35 + kycos8,)  €R||p|> —
27 27

(visible spectrum)

k?=wpge, ER
(14)
and (13) becomes
5 At s
K(a(v,03),,8(v,03)) =- Z#ewmlp(”, y1) (15)
3

where
~ +o0 p+o00
R(a,B)=[ [ "K(x,y)em=+M dxdy (16)

denotes the 2-D Fourier transform of K(x, y).

So medium 3 is assumed to be lossless for the object
reconstruction, but losses are taken into account in the
simulation of the direct problem. This assumption sim-
plifies the Fourier relation between the diffracted field and
the normalized polarization current. The exiension to lossy
media could be carried out using Laplace or Fourier
transforms in the complex plane. The relation (15) states
that, for || <k,/2, the Fourier transform of the dif-
fracted field for an incidence 8, provides information on
the 2-D Fourier transform of the polarization current
distribution on a circular arc S(6,) defined by (14). Fig. 2
shows the circular arc S(6,) in the Fourier plane corre-
sponding to the normal incidence (8, = 6; = 0). This result
is very close to the generalized Radon theorem, which has
been formulated in recent papers [15], [16].

The quality of object reconstruction will be determined
by the impulse i(x, y) of the system. The reconstructed
spatial distribution is given by the following convolution
product:

K(x,y)=K(x,y)*h(x,). (17)
We examine the case where the incident plane is normally
incident (8, = 6, = 0).
In order to determine the impulse response of the sys-
tem, we consider that K(x, y, is a Dirac distribution.
Therefore

K(x,y)=8(x,y) (18)
and

K(a.pB)=1. (19)
In the case of normal incidence, the circular arc in the
Fourier plane is defined by

a(v,0)=v»

1
,B(V,O)=_E(}~’3+k3) (20)

] < —.
29
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Fig. 2. Circular arc S(0) in the Fourier plane over which R(a,B) is
determined for the normal incidence case, i.e., 6; =0, and €; > ¢. ——
Nonevanescent spectrum. ----- Evanescent spectrum.

Thus, K(x,y) is obtained by taking the inverse 2-D
Fourier transform of K(a, 8), defined by
a=a(r,0)

o 1, f <

K(a,B) = Or{,B—,B( ,o)"

0, elsewhere

(21)

and
~ 400 p+ A
K(x.y) =f7 f‘ OOK(a,,B)ez’"‘“”By’dad,B. (22)

By performing a simple change of variable, we obtain

h(x,y)= kf (23)

The amplitude of this integral is shown in Fig. 3, and the
resolution (width at half height of the central lobe) is seen
to be better along the x direction than along y; we can
estimate them to be 8, =0.6A; and §,=8A; (A; denoting
the wavelength in vacuum; at 3 GHz, §,=6 cm and
8, =80 cm). One notes that the air—soil interface is not
discerned in the reconstructed image. Indeed, the interface
is not discerned in the reconstruction algorithm with for-
mula (15). That could be rigorously demonstrated using a
point source located in the soil at point (x,, y,). After
some calculations, one obtains for the reconstructed image

/27
/27773

—t(y3+k3)y82mvx dv.

eilkS,Vs

kT

K(x,y)= h(x—x;,p— )

where A(x, y) is the impulse response in the unbounded
soil (eq. (23)) and T is the transmission coefficient of the
air—soil interface (eq. (9)).

While the transversal resolution §, is quite satisfactory,
the longitudinal one, §,, needs to be improved. Thus, the
main problem is now the improvement of the knowledge
of K(a, B). To obtain more information in the Fourier
domain, we consider the incidence and frequency variation
of the incident plane wave.

In medical applications, sources and receivers are free to
rotate around the object, and a good symmetric impulse
response can therefore be obtained. In our case, we cannot
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Fig. 3. Example of reconstuction at 3 GHz of |h(x, y)| for ¢, =15 and
0, =5%10"2 S/m. (a) Normalized transversal section. (b) Normalized
longitudinal section. (c) 3-D representation (8, = 6 cm and 8§, = 80 cm).

adopt the same procedure. One method consists in measur-
ing the diffracted field on a fixed probing line for plane
waves with the angle of incidence varying from — /2 to
+m/2. Fig. 4 shows three circular arcs S(6,) corre-
sponding to incidence angles of — 7/2,0, + 7/2. ‘

By combining all the incidence information in the Fou-

rier domain, we obtain

K(a,B) = ZK( a(».8), 8(7.5))
where N; denotes the.‘number of incidence angles. By
performing the inverse 2-D Fourier transform of the result-
ing information, the reconstruction is given by

(24)

N ,
R(x,y)= X K(6;x,y)*h(6;x,)  (25)
j=1
where ‘
k3(x, ) $(0;x, y)
K(6; = 1+ 26
(,jaxvy) [ k32— E;(Hj;x,y) ( )
and
h(0;x, y)

1 .
/27 — e (it kacosty)) o 2im(v—ks/2msinds) g,
ki /2m Y3

i f'
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Fig. 4. Circular arcs S(f;) in the Fourier plane over which K(a, 8) is
determined when 6, takes the values —7/2, 0, +/2; the centers
C(8,) of the circle arcs lie on a circle arc of radius k; /27 centered at
(0,0). — Nonevanescent spectrum. ----- Evanescent spectrum.
Variation domain of C(6,).

Angles 6, and 6, are related by Snell’s law (9), so that
values of 03, when 8, varies from —7/2 to + /2, belong
to the interval

: | k1 . k1

A, = | —arcsin ;arcsin
' k3 K3

Centers of the supports C(6,) (see Fig. 4) move on a

circular arc of radius k,/2x defined by an angle of 2

arcsin(k, /k,). The spatial frequencies belong to the fol-

lowing intervals: ’

ki ky ki
Aa=|——,— 10| < arcsin
R 4 for k3
k Vk2—k2 R

(28)

The more (¢;, 6,) and (e, 0;) differ, the more the informa-
tion in the Fourier domain is reduced. The Fourier domain
we fill up is in fact limited to such a small area that it is
necessary to use some other technique to extend the
knowledge of K(a, B). The quality of the spatial impulse
response can be improved by processing data obtained
from measurements performed at different frequencies [17]

Fig. 5 shows two circular arcs S(w) corresponding to
frequencies w,, w,, with @r> w, for normal incidence. By
combining information in the Fourier domain, a s1m11ar
relation is obtained:

I%(a,ﬁ) = i K(Qi;a(Vawi)aB(V’wi))-

i=1

(29)

- Thus, taking the inverse 2-D Fourier transform of g (a,8)

Ng

K(x,y)=Y K(w;x,y)*h(w;x,y)
i=1

(30)
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Fig. 5. Circular arcs S(w) in the Fourier plane over which K(a, B) is
determined when the frequency varies from w, to ,. (w, < w,) in the
case of the normal incidence (#, = 0). —— Nonevanescent spectrum.
————— Evanescent spectrum.

with

. _ ké(wl;x’ y) \P(wl;x’y)
K(wi’x, y) - l: kg(wl) —1}[14- E;(w,;x, y)jl (31)
and

h(“’iQX, y)= k3(‘°i)
2imvx

e

.f+"1(“")/2"6-x(%(w,)+k3<w.))y dv. (32)
— k()2 5(w;)

By combining in the Fourier plane information obtained

from measurements performed at N; incidences and Ng

frequencies, we obtain a reconstructed K(x, y), given by
Ng N

K(x,y)= X ¥ K(w;38;x, y)*xh(w;0;x,y). (33)

=1 ;=1

III. NUMERICAL ASPECTS

A. Description of the Algorithm

In this section, we test the algorithm as it is indicated in
Fig. 6. Using the integral formulation (2), the evaluation of
the diffracted field on a probing line requires first a
knowledge of the total electric field inside the inhomogene-
ity. In order to calculate this field, we have to solve a
Fredholm’s integral equation of the second kind by means
of the method of moments [14], [18]-{22]. This leads us to
the solution of a system of linear equations with rank N
(N representing the total number of elementary cells con-
stituting the object). Cells have to be taken sufficiently
small so that the dielectric constant and the electric field
can be considered constant over each cell. The total field
in the object is obtained after inversion of this system by a
Gauss—Jordan algorithm. The diffracted field can then be
computed for any point in the space by using the ap-
propriate Green’s function. The accuracy of the numerical

1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 10, OCTOBER 1986

COMPUTATION OF THE
DiFFRACTED FiELD

DIRECT

MOMENTS METHOD PROBLEM

1-D  FFT OF THE

DiFFRACTED FIiELD

1

INTERPOLATION iN INVERSE

THE FOURIER DOMAIN

NEAREST-NEIGHBOUR METHOD PROBLEM

2-D INVERSE FFT OF
THE RESULTING INFORMATION
iN THE FOURIER DOMAIN

7

Fig. 6. Main steps of the algorithm used for buried object imaging
(direct and inverse problem).

approximations has been checked by making computations
for the same object with different values of Ax (Ax
denoting the size of an elementary square cell). Results
with an accuracy of about 5 percent are obtained for a
sampling interval A of A, /5, where

A €
1 3
and e, =—

3

€ €

Briefly, the reconstruction algorithm based on Fourier
inversion formulas consists of three major steps.

1) 1-D Fourier Transforms: The first step of the al-
gorithm is to compute the 1-D Fourier transform of the
diffracted field measured in the air at angles 6, , j=1, Ny
and frequencies w,, i =1, Np. The sampled diffracted field
Y y(x), measured at 2N +1 points with a sampling interval
Ax, can be written as

Y (x) = Sy(x)¥(x).

Here, ¢(x) denotes the diffracted field for an incidence 6,
at a frequency w measured on a probing line of infinite
length situated at y; above the air-soil interface, and
Sy(x) is a distribution defined by

s =T 8(p-m)= T

m=—N m=-N

(34)

N
Ax8(x — mAx)

(35)

where 8(x) denotes the Dirac distribution.
The next step is to take the Fourier transform of y ,(x)
so that

N
Axlp(mAx)e—vamAx
N

(36)

NORES)
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or ‘
sin[72(2N +1)Ax]

sin[7rAx]

Py (v) =Axd(v)+ (37)
Thus, J’N(”) is a periodic function of period 1/Ax. In
order to avoid problems of aliasing in the computation of
) ~(7), we have to sample with

A A]
< .
X <

(38)
_ 2) Interpolation in the Fourier Domain: Numerically,
Y (») is computed by a fast Fourier transform algorithm.
The Fourier plane is filled by methods previously de-
scribed, and the interpolation from the given circular arcs
to the Cartesian grid is realized by the nearest neighbor’s
method. Other methods of interpolation which have been
successfully employed in object reconstruction [15],
[23]-[25] have not yet been used.

3) Inverse 2-D Fourier Transform of K(a, B): If K(a B)
is sampled with

Aa= and AB=

(2N +1)Ax 2M+1)Ay

the 2-D inverse fast Fourier transform provides a QN +1)
X (2M +1) reconstruction given by

K(x,y)
QN+1)2M+1)AxAy
sin(ax /Ax)sin(7y/Ay)
| 7x /N +1)Axry/2M +1)Ay

K~N(xay)=

(39)

where K(x, y) is defined by (33). To summarize, the two
main sources of error for the inverse problem are the
undersampling of the diffracted field and the insufficient
length of the probing line.

In these simulations, our primary goal is to evaluate the
impulse response of the system, that is, the reconstruction
of K(x,y)=8(x—x,y—y,) (e, a diffracting object
located at (x,, y,), ¥, > 0). Then we shall examine the more
realistic case of objects embedded in different soils, the
size of which is of the order of the wavelength.

Electromagnetic parameters of soil are dependent on
soil density, water content, frequency, and temperature.
There exist several papers which deal with measurements
of conductivity and dielectric constant of different soils at
microwave frequencies [26]-[28], and some attempt has
been made to model the dielectric behavior of soil-water
mixtures in the microwave region [29]. At 3 GHz, the
relative permittivity €, increases with soil density, and the
water content varies from 2.55 (dry sand) to approximately
20 (loamy soil, 13.77 percent moisture) [27]. The conduc-
tivity o, is very dependent on water content; for the same
soil at 3 GHz, its values are given by 0, =2.6x107% S/m
(dry sand) and o, = 4X107! S/m (loamy soil). In order to
evaluate signal attenuation in the soil, let us consider the
transmitted portion of the incident plane wave

Ez’(x, y) = Teik3(xsin03+ycoso3). (40)
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Along the y direction, the attenuation A is given by
A= e—Im(k3 cosfy)y

(41)
with Im(k;cos8;) > 0. The penetration depth § is there-
fore defined as

1
= W (42)
which can be written as
1
6= s kiky sin@, (43)
P 2(kg k1)
with
ky=ki+iky (44)
where
k§=%\/wzuoe3+wu0(w €: + 0; )1/2 (45)
and
kg = i O3k o (46)

1/2
\/w o€zt w,u.o(wze§ + 032) /
for a plane wave of incidence 8, and circular frequency.
For example, in the case of normal incidence, the penetra-
tion depth in dry sand and loamy soil are, respectively,
8(dry sand) =32 m; 8(loamy sol) 006 m . .

It appears that the two major difficulties with electro-
magnetic methods are the attenuation in transmission of
microwaves in soil and the deterioration of spatial resolu-
tion when a lower frequency is used to seek lower attenua-
tion.

B. Numerical Simulations

1) Point Spread Function of the Reconstruction Process:
Let us consider a point-diffracting object located at (x,, y,)
in a soil characterized by ¢, =15 and 0;=5x10"? S/m.
Our purpose is to evaluate the improvement in the trans-
verse and longitudinal resolution (§,,8,) by using mea-
surements performed at different incidences and frequen-
cies. The first simulation is characterized by the following
choices: the frequency is fixed at 3 GHz (A; =10 cm and
the penetration depth for normal incidence is about 40 cm
in this case), and the object is characterized by a dielectric
permittivity €, =2.5 and conductivity o,=0 S/m. The
diffraction pomt is buried at a depth y, = )\ (with x = 0)
and the diffracted field is measured on a probing line of
20\, situated at y, = A, above the air—soil interface. In
the case of using an incident field with 25 incidences
regularly distributed between the interval — «/2 and + /2
(case 1), the magnitude of the image is shown in Fig. 7.
The transversal and longitudinal resolution can be
evaluated as §, = 0.4A; and &, =5A,.

In order to obtain a quasi-symmetrical resolution along
the x and y directions, we make the incidental frequency
—ary. We consider the following example, where frequency
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Fig. 7. Impulse response of the reconstruction process obtained at 3
GHz in the case of 25 plane waves with incidences in the interval
1—7/2,7/2] . (a) Normalized transversal section. (b) Normalized longi-
tudinal section. (¢) 3-D representation (8, =4 cm and §, = 50 cm).

varies in the range 2.43-3 GHz divided in 20 steps of
Af=0.03 GHz (incidence is fixed to 6;=6,=0). The
result of such a simulation is shown in Fig. 8. Resolutions
along the x and y directions are roughly equal, so that
8,=0,=0.6A; (A denoting here the minimal value of the
wavelength for the frequency range considered). Fig. 9
permits comparison of the half-height sections of the two
images. By combining data obtained from case 1 and case
2 (for every frequency, plane waves with 25 incidences are
used to fill up the Fourier plane), we obtain the image
which is depicted in Fig. 10, with §, = 0.4A; and §, = 0.6A,.
A filter can be used in the Fourier plane to reduce the
sidelobes of the spatial impulse response, but this method
generally results in a decrease in resolution [30].

We now evaluate the performance of the algorithm as a
function of object electromagnetic parameters (e,,o,).
First, consider the case of two diffracting points buried at
the same depth y, = y,, = 3A,, characterized by the same
electromagnetic parameters €, =€, =25, 0;=0,=0
S/m, and separated by a distance of 2A,. The reconstruc-
tion obtained in magnitude is shown in Fig. 11 (a) and 12
(a). The transversal section of the image provides a
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Fig. 8. Impulse response of the reconstruction process in the case of the
normal incidence and a frequency variation from 2.43 GHz to 3 GHz.
(a) Normalized transversal section. (b) Normalized Jongitudinal section.
(¢) 3-D representation (8, =8, = 6 cm).

depth

7.5 A4

Fig. 9. Comparison of the half-height sections of 112 (x, y)| obtained in
the two previous cases: 1) incidence varies from —x/2 to + /2,
frequency is fixed at 3 GHz; 2) frequency varies from 2.43 GHz to 3
GHz in the case of normal incidence.
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Fig. 10. Impulse résponse for an incidence variation from —a/2 to
+ 7/2 and a frequency variation from 2.43 GHz to 3 GHz (8, =4 cm
and §, =6 cm).

quantitative evaluation of the reconstructed distance which

separates the two diffracting points. In order to evaluate

the accessible contrast, we now examine the reconstruction
of the two diffracting points with different electromagnetic
characteristics. The two objects are characterized, respec-
tively, bye, =25ande, =5,7,9,and 6, =0,,=0S/m.
The results are shown in Figs. 11 (b)—(d) and 12 (b)—~(d).

2) Object Reconstruction: Our purpose is to evaluate the
capability of the imaging algorithm for reconstructing ob-
jects of different shapes.’ Let us first consider (case 1) a
dielectric rod (e, = 2.5, o, =0 S/m) buried in a soil char-
acterized by ¢, =15, 6;,=5x10"? S/m. The object is
embedded at a depth of 3], and its dimensions along the
x and y directions are L, =3\/2 and L,=A,/10. The

length of the probing line is 20X, and it is situated at A,

above the air—soil interface. The frequency of the incident
plane waves varies by steps of 0.03 GHz between 2.43
GHz and 3 GHz; for each frequency, 25 incidences are
used within the interval |— «/2, 7/2[ . The magnitude of
the image is shown in Fig. 13 (a) (filtered at half height)
and in Fig. 13 (b). The second rod has the dimensions
L,=X,/10 and L,=3A,/2 (rotation of 90° from the
previous case), and it is illuminated with the same il-
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Fig. 11. 3-D representation of 1K(x, y)| in the case of two dielectric
objects much smaller than the wavelength with different electromag-
netic parameters buried at the same depth (y,; = y,, = 30 cm). For all
cases, €, = 2.5, 0, =0, =08/m,and ¢, =25.(a) ¢, = 5.() €,,=T7.
(©)¢, ,=9. (d) Frequency varies from 2.73 GHz to 3 GHz and incidence
varies in the range |- #/2, + 7/2[.

lumination characteristics. One notes that the obtained
image (see Fig. 13 (b) and (c¢)) does not square exactly with
the real geometry of the rod. Keeping in mind that the
reconstruction process gives a representation of the polari-
zation currents, illuminated parts of the object (i.e., the

~ front) will be better reconstructed.
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Fig. 12. Transversal sections of |K(x, y)| corresponding to the 3-D
representations shown in Fig, 11,
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Fig. 13. Modulus of K(x, ) for a dielectric rod (¢, = 2.5, o, = 0 S/m) parallel ((a) and (b)) and perpendicular ((c) and (d))
to the air-—soil interface.
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Fig. 14. 3-D representation of |K(x, y)| obtained in the case of a homogeneous dielectric cylinder (¢, = 3.5, 6, =0 S/m) of
rectangular. section (I, =3A, /2, [, = 0.91) in the case of two different soils. Case 1:(a), (b}, (c) Loamy soil of 13.77-percent
water content (¢, = 20, o3 = 0.4 S/m). Case 2:(d); (e), (f) Dry sand (¢,, = 2.55, 03 =2X 1073 S/m). K(x, y) is obtained for
(a), (d) a plane wave incidence variation in the interval |- #/2, + o/’ 23[ , (b), (e) for a plane wave frequency variation from
2.43 GHz to 3 GHz, and (c), (f) for both incidence and frequency variation.

In the case of the two different soils considered before
—loamy soil of 13.77-percent water content (case 1: €, =
20, 6;=0.4 S/m) and dry sand (case 2: ¢, =2.55, 0, =2
X 1073 S /m) [27]—the object is a homogeneous rectangu-
lar cylinder with dimensions L, =3A;/2 and L, =0.9A,,
characterized by €, =3.5 and 63 =0 S/m and buried at a
depth D = 3A,. The length of the probing line is 20, and
it is sitnated at a distance y,=A; above the air-soil
interface. Fig. 14 shows the reconstructed object in the two
cases of loamy soil (Fig. 14 (a)—(c)) and dry sand (Fig. 14
@-(). - )

The three representations of |K(x, y)| are for a vari
ation of the plane wave incidence in . the interval
1—w/2, + a/2[ with Af, = w/35 (Figs. 14 (a) and (d)), for
a variation of the plane wave frequency from 2.43 GHz to
3 GHz with Af=0.03 GHz, and for both inicidence and
frequency variation of the incident plane wave (Fig. 14 (e)
and (f)). Fig. 15 shows the same results in magnitude
filtered at half height (the images of |K(x, y)| being

represented with five highest levels over ten levels and with

a relative maximum for each figure), and the geometry of

the real object is drawn in dashed line. It is obvious that

the object is best reconstructed when it is embedded in the

dry sand because of the refraction of the plane wave at the

air—soil interface; the incidence variation in case 2 pro-

vides more information about the shape of the object than

in case 1. The difference between Fig. 14 (¢) and (f) or Fig.

15 (c) and (f) could be explained from two factors. First, .
since the permittivity of the loamy soil is more important

than that of the sandy soil, the information in the spectral

domain for the loamy soil is more reduced and concerns
higher spatial frequencies (see (28)) and the image reflects
the discontinuities of the object along the y axis. Second,
the conductivity of the loamy soil is higher than that of the
sandy soil; the working frequency (2.43-3 GHz band) is
such that the first soil-object interface is well depicted,
whereas the second is not retrieved. It would be necessary
to use lower frequencies for the loamy soil.
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Fig. 15. 2-D representation of |K(x, y)| filtered at half height corresponding to the same cases as in Fig. 14 (5 highest levels
among 10 levels).

IV. CoNcCLUSIONS

Using the integral formulation of the diffracted field
presented in this paper, we are able to estimate the electro-
magnetic response of a two-dimensional inhomogeneity
buried in the earth for a plane wave excitation. We have
also shown how algorithms employed in diffraction tomog-
raphy can be applied to obtain images of buried objects.
Simulations concerning the shape and the size of the object
have been carried out for different values of soil electro-
magnetic parameters. The image is given by the map of

|K(x, y)| represented by means of 3-D plots. However,
images based upon the phase of K(x, y) (which needs to
be unwrapped) could also be considered, for they might
provide complementary information on the target. We
have avoided discussing a number of details that must be
taken into account in practical applications, such as the
effect of a layer (water, ice, snow, etc.) and the effect of
noise on the image quality.

Some of the problems to be solved in the future are the
separation of the information concerning the object from
soil surface reflections; the effect of noise and of a strati-
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fied ground on image quality; and the application of this
method in a three-dimensional problem.

APPENDIX

A line source is located at a point (x’, y’) with y’> 0 in
a soil characterized by ¢,,,0;; (x, y) denotes the observa-
tion point where the field must be evaluated. The Green’s
function satisfies

A, G(x, y;x, y' )+ kiG(x, y;x', ') =0, (y<0)
A,,G(x,y;x, y')+k3G(x, y;x’, y')
=-8(x—-x",y-y), (y>0) (A1)

where 8(x, y) denotes the bidimensional Dirac distribu-
tion centered at (0,0) .and Axy is a scalar Laplacian
operator defined by
a2 a2
=—+—.
woog9x? o ay?

Let g(», y;x’, y) be the Fourier transform of G(x, y;x’, y*)
with respect to x. Thus

+ 00 2
G(x, y;x',y’) =f g(v, y;x’, y")e* ™ dv (A2)
- 00

A

is the system (A1) is equivalent to
d%g
e +9g=0
d%g ,
5)_,34_ 32g=_6(y__'y/)e 2imvx

with

(for y > 0)

(for y <0) (A3)
7'/2=kj2—47721/2, j=13.
Solutions of system (A2) are given by

(for y<0)
(for0 < y < y’)
(for y > y’).

B\, A,, B,, A, are given by the boundary conditions:

g= Bl e“'"?x)’
g= A3e’73y+ B3e"“i“73y

g = A4ei73y

(A4)

1) continuity of g for y=0 and y = y*;
2) continuity of dg/dy for y =0; and
3) discontinuity of dg/dy for y = y’.
Thus,

g
yoyt  dy

dg
dy —¢

y =y’

2imvx’

(A5)

These boundary conditions are determined by the follow-
ing relation:

fll: {f”} + .glotfls(x - x1)+ o'tfsl(x - xt) (A6)

between the second derivative taken in the distribution
sense f” and the second derivative taken in the function
sense { f’’} for a function f which admits finite discon-
tinuities at points x, (i=1,..., n), where 0, and o, are
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given by
) O'lfzf(x;’-)_-f(x;)
Oy = f/(xi+ ) - f’(x{)
and 8(x —x,), /(x —x,) and f’ denote, respectively, the
Dirac distribution centered at x,, its first derivative, and

the first derivative of f.
Solving the boundary conditions, one obtains

]

Bl = — — et?;y’e—2mvx’
Yt+¥,
4= _(1(3 - 31) A
2%, ('Y3 + Yl) '
i
B3 — ___:__et?gy'e*—2mvx'
2%,
27, (Ys + Yl)

and finally

v Y Y. —_ ’
el e thy, 2imvx

g(v, y;x', y) =

(11+%)
(for y <0)
i 5 , (73 B 71) 5 .
g(v, ysx/, y') = 5| B4 e MOy )]
( ) 29, \ ('Y3 + Y1)
-e” ™ (for y>0) (AS8)

which yields G(x, y;x’, y’) upon substitution of (A8) into
(A2).
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