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Electromagnetic Modeling for Microwave
Imaging of Cylindrical Buried

Inhomogeneities

LUC CHOMMELOUX, CHRISTIAN PICHOT, AND JEAN-CHARLES BOLOMEY

,-lMract —Many diagnostic techniques in geophysics and civil engineer-

ing are based on the interaction of electromagnetic waves with objects

buried in homogeneous or stratified media. Most of the investigations are

concerned with the detection of buried objects, but a few papers have dealt

with the problem of identifying the objects.

The proposedmethod is basedon the integral representationfor a plane

wave incident on a lossy half-space containing a cylindrical object of

arbitrary cross section and electrical properties. The induced current

distribution in the object is obtained from the backscattered field measure-

ment in amplitude and phase. In order to improve the spatial resolution of

the image, the scattered field is measured for different plane wave inci-

dence and frequencies. Results of numerical simulations concerning the

shape and size of the object for different values of soil electromagnetic

parameters are presented in thk paper.

I. INTRODUCTION

THE DETECTION and identification of buried inho-

mogeneities using electromagnetic waves are areas of

current importance for geophysical or civil engineering

purposes. An example is the detection of pipes and cables,

some of which may consist entirely of plastic materials.

For such cases, conventional metal detectors fail and one

must employ alternative means of investigation. During

the past few years, some papers have been concerned with

this problem. The possibility of identifying nonmetallic

objects buried at shallow depths below the ground has

been demonstrated using an FM radar in the 2-4-GHz

range [1], a step frequency radar in the 300–700-MHz

range [2], and impulse radars [3]–[5]. The principle of

identifying buried objects by the microwave holographic

imaging method has been established in recent years.

FUchards et al. [6] proposed a technique able to produce

images of gas pipes at depths up to 0.25 m below the

ground with a 0.95-GHz radiation, but since the method

employs only a single frequency, it does not provide a high
vertical resolution.

Osumi and Ueno recently developed a microwave imag-

ing method [7] which they applied to underground imaging

[8]. The reflectance of the buried object is reconstructed

from the knowledge of the scattered pulses measured at a
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collection of points in the air, so that both vertical and

horizontal resolutions are improved.

Our approach is based on recent work in medical appli-

cations concerning active microwave and acoustic imaging

[9]-[12], [31]. Reconstruction algorithms have been ex-

tended to the case of inhomogeneities embedded in the soil

by taking into account the presence of the air–soil inter-

face and by measuring the backscattered field in air. The

simulation algorithm can be divided into two parts: the

direct problem — simulation of experimental measurement

of the diffracted field, and the inverse problem — recon-

struction of a function characteristic of the inhomogeneity

from knowledge of the diffracted field for different inci-

dence and frequencies.

In this paper, we first present the theoretical formula-

tion upon which the imaging method is based. We then

describe the main steps of the algorithm (direct and in-

verse problem). Finally, numerical results concerning the

size and the shape of the object for different soils are

presented.

II. THEORETICAL FORMULATION

We consider a cylindrical inhomogeneity embedded in a

lossy homogeneous half-space (Fig. 1). Media 1 and 3 are

air and soil, respectively, and are characterized by dielec-

tric permittivity, and conductivity Cl, crl and (~, us, respec-

tively. The object is characterized by ES(X, y), o,(x, y).

The object of arbitrary cross section S(x, y) is illuminated

by an incident plane wave whose electric field vector is

perpendicular to the incidence plane (TM case). For any

point (.x, y) inside or outside the object, the total electric

field can be expressed as the sum of the incident field E:

(defined as the field when the object is removed) and
diffracted field r)

Ez(x, y)=E;(x, y)+l)(x, y). (1)

Because of the size of the object, whose dimensions are

about one wavelength (resonance domain), an exact formu-

lation of the diffracted field must be employed. Analytical

formulations which are available only in particular cases

(buried circular cylinder [13], for example) have been

rejected.

An exact representation for the z component of the

diffracted field at a point (x, y) (for a time factor e- ““) is
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Fig. 1. Geometry of the problem in the (x, .v) plane

given by [14]

$(x, y)= J@(x’,y’)- k;]Ez(x’,y’)

-G(x, Y; X’, y’) dX’dY’ (2)

where

k;(x, y)=ti%,( x,y)po+icqqpj( x,y), j=l,3, s

(3)

and S is the region y >0 for which the medium parame-

ters differ from those of the background medium.

G(x, y; x’, y’) is the Green’s function, which can be

interpreted as the electric field created at a point (x, y) by

a line source of current situated at a point (x’, y’).

G(x, y; x’, y’) is given by its integral expression (see Ap-

pendix)

[J+~i
—e –i71ye173y ’e217rv(x-x’) dv

–m 71+73

I (for y <O)

G(x, y;x’, y’)= {J-[+W i

(for y’> O) -m 273
e2731.v–.v’l

73 – % e,y,(y+yq
+—

1
e21TV(X–.Y’) dV

73+ 71

~ (fory> O).

, (4)

We shall note

{

Gl(x, y;x’, y’) (fory <O)
G(x, y;x’, y’)=

G~(x, y;x’, y’) (for y > O)
(5)

Because of the air–soil interface, the incident plane wave

generates two waves: a reflected one (for y <O) and a

transmitted one (for y > O), in the absence of inhomogene-

E;(x, y) =
{

(for y< O)

~etk,(xsine, +ycose,)

( (fory> O).

We shall note

(7)

(Ej(x, y)+ E:(x, y) (fory <O)
E;(x, y)= (8)

E;(X, y) (for y > O)

with

l–n
R=—

l+n
T=—

l+n

‘=3 & I

(Fresnel’s relations)

(9)

and

kl sinfll = k~ COS93 (Snell’s law).

The reconstruction method is based on the measure of the

diffracted field in the air on a probing line of finite length,

parallel to the air–soil interface. Let us consider the ex-

pression of the diffracted field for y = yl ( yl < O) when

the object is illuminated by a plane wave with an electric

field amplitude of lV/m and an incidence 01 (Fig. 1)

+(x, y,) = Jp:E;(x’, y’)K(x’, y’)

OGl(x, yl;X’, y’) dx’dy’ (10)

where

represents the normalized polarization currents. By sub-

stituting (4) and (7) into (10) and defining the Fourier

transform of (x, yl) with respect to x as follows:

~(v,yl)=~+m+(x, yl)e-2’7Uxdx (12)
—w

we obtain

ik~Te–i71Yl
l$(v, y,)= ~7, +73) Jp(x’, y’)

“e-2i”[(v-:sing3)x’

1- ;(73 + k3cos03)y’ dx’dy’. (13)

Since K(x’, y’) is zero outside the object, we can extend

the integral to infinity. In order to define the usual 2-D

Fourier transform, we must consider a real coordinate

system in the Fourier plane; this is realized by the assump-
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tion us = O in the inverse problem. Thus, we can define

I
kl

~(v, t9,)=-&+k,cos6j)
()

GR [vl>—
27T

(visible spectrum)

k:= U2pOc3 ● l+

(14)

and (13) becomes

(71+73) -
k(a(u,Oq), ~(v,6q)) = –i k2T e’Y’’’J(~2Y1) (15)

3

where

~(a,~) = ~+w~+~K(x, y)e-2’7(”’+P~jdxdy (16)
—cc —cc

denotes the 2-D Fourier transform of K(x, y).

So medium 3 is assumed to be lossless for the object

reconstruction, but losses are taken into account in the

simulation of the direct problem. This assumption sim-

plifies the Fourier relation between the diffracted field and

the normalized polarization current. The exiension to lossy

media could be carried out using Laplace or Fourier

transforms in the complex plane. The relation (15) states

that, for Ivl < kl/2n, the Fourier transform of the dif-

fracted field for an incidence f31 provides information on

the 2-D Fourier transform of the polarization current

distribution on a circular arc S(O~) defined by (14). Fig. 2

shows the circular arc S( 19~) in the Fourier plane corre-

sponding to the normal incidence (81 = 193= O). This result

is very close to the generalized Radon theorem, which has

been formulated in recent papers [15], [16].

The quality of object reconstruction will be determined

by the impulse h (x, y) of the system. The reconstructed

spatial distribution is given by the following convolution

product:

l?(x, y)= K(x, y)*h(x, y). (17)

We examine the case where the incident plane is normally

incident (01 = Oq= O).

In order to determine the impulse response of the sys-

tem, we consider that K(x, y j is a Dirac distribution.

Therefore

K(x, y)=a(x, y) (18)

and

Z?(a, p)=1.

In the case of normal incidence,

Fourier plane is defined by

(a(v,o)=.

(19)

the circular arc in the

(20)

K3 .$
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~ K, &
2T zn
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1
,

I

ffi~! -_ .-_,------
2X ;,

! /
,

,;,
I ,;I

,>,
, ,.,

: ,,.. ”

-_-J--’’”.% ,.
s(o)

Fig. 2. Circular arc ,S(0) in the Fourier plane over which ~( a, ~) is

determined for the normal incidence case, i.e., 81 =0, and (3 > cl. —
Nonevanescent spectrum. ----- Evanescent spectrum.

Thus, Z?(x, y) is ob~ained by taking the inverse 2-D

Fourier transform of K(a, ~), defined by

(( a=a(v,o) kl

I@@) = 1’ ‘or ~=p(v,())lvl~fi (21)

(0, elsewhere

and

X(x, y) = ~+mJ+m~(a, ~)e2’m(”’+PY)dad~. (22)
—w —m

By performing a simple change of variable, we obtain

The amplitude of this integral is shown in Fig. 3, and the

resolution (width at half height of the central lobe) is seen

to be better along the x direction than along y; we can

estimate them to be 8X = 0.6AI and 8Y= 8AI (Al denoting

the wavelength in vacuum; at 3 GHz, 8X = 6 cm and

Sy = 80 cm). One notes that the air–soil interface is not

discerned in the reconstructed image. Indeed, the interface

is not discerned in the reconstruction algorithm with for-

mula (15). That could be rigorously demonstrated using a

point source located in the soil at point (x,, y,). After

some calculations, one obtains for the reconstructed image

e
—zk3y,

i(x, y)=mh(x–x,, y–y,)
3

where h ( x, y) is the impulse response in the unbounded

soil (eq. (23)) and T is the transmission coefficient of the

air–soil interface (eq. (9)).

While the transversal resolution il. is quite satisfactory,

the longitudinal one, 8}, needs to be improved. Thus, the

mai~ problem is now the improvement of the knowledge

of K( a, /3). To obtain more information in the Fourier

domain, we consider the incidence and frequency variation

of the incident plane wave.

In medical applications, sources and receivers are free to

rotate around the object, and a good symmetric impulse

response can therefore be obtained. In our case, we cannot
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Fig. 3. Example of reconstruction at 3 GHz of ]h (x, y) I for c, =15 and

us = 5 X 10– 2 S/m. (a) Normalized transversal section. (b) ~ormahzed
longitudinal section. (c) 3-D representation (8X = 6 cm and ~,= 80 cm).

adopt the same procedure. One method consists in measur-

ing the diffracted field on a fixed probing line for plane

waves with the angle of incidence varying from – n/2 to

+ 7r/2. Fig. ~ shows three circular arcs S(f31) corre-

sponding to incidence Wgles of – T/2, O, + r/2.

By combining all the incidence information in the Fou-

rier domain, we obtain

i(a, p)= f Iqej;a(v,ej),p(v,oj)) (24)
j-l

where NI denotes the number of incidence angles. By

performing the inverse 2-D Fourier transform of the result-

ing information, the reconstruction is given by

N,

I?(x, y) = ~ K[ei; x,y)*h(ej; x,y) (25)

where

[

k:(x, y)
K(@j; x, Y)= kf_~

and

h(tlj; x,y)

I/@j;x,y)

1+E;(dj;x,y) 1

(26)

I

Fig. 4. Circular arcs S(O1) in the Fourier plane over which ~( a, /3) is
determined when 01 takes the values – 7r/2, O, + T/2; the centers

C( $, ) of the circle arcs lie on a circle arc of radius ,k, /2T centered at

(0,0). — Nonevanescent spectrum. ----- Evanescent spectrum. . . ~.

Variation domain of C(OI).

Angles f31 and OS are related by Snell’s law (9), so that

values of 03, when 01 varies from – w/2 to + 7/2, belong

to the interval

‘e3=[-arcsin(?)arcsin(N
Centers of the supports C(81) (see Fig. 4) move on a

circular arc of radius k~ /2 m defined by an angle of 2

arcsin( kl /k3 ). The spatial frequencies belong to the fol-

lowing intervals:

{

[1Aa= –g,~

{

()

. k,

A,=]_:,:/@, ‘or ;:; ‘i

(28)

The more (cl, Ul) and (cq, us) differ, the more the informa-

tion in the Fourier domain is reduced. The Fourier domain

we fill u[p is in fact limited to such a small area that it is

necessary to use some other technique to extend the

knowledge of I?(cx, ~). The quality of the spatial impulse

response can be improved by processing data obtained

from measurements performed at different frequencies [17].

Fig. 5 shows two circular arcs S(u) corresponding to

frequencies Ul, ti2, with UI >02 for normal incidence. By

combining information in the Fourier domain, a similar

relation is obtained:

l?(a, p)= : K(tii; a(v, ui), p(v, ul)). (29)
;=l

Thus, taking the inverse 2-D Fourier transform of l?(a, ~)

NF

i(x, y) = ~ K((.di; x, y)*h(wi; x, y) (30)
i-l
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1
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with

and

h(@j; X,,y)=k3(Ldi)
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Fig. 6. Main steps of the algorithm used for buried object imaging
(direct and inverse problem).

~+ r)(q; x,y)

Jz(q; ~>Y) 1
(31)

approximations has been checked by making computations

for the same object with different values of Ax (Ax

denoting the size of an elementary square cell). Results

with an accuracy of about 5 percent are obtained for a
~2imx

. (+h(q)/2~
~–J($’3(%) +~3(@r))Y ~dv. (32)

sampling interval Ax of A ~/5, where
-/‘–kl(o,)/2r y3((Ji) ‘ ‘ Al 63

A3’— and cr~= —.
By combining in the Fourier plane information obtained r

cr3
c1

from measurements performed at NI incidence and N~

frequencies, we obtain a reconstructed I?(x, y), given by Briefly, the reconstruction algorithm based on

IVF IV1 inversion formulas consists of three major steps.

ZZ(x, y)= ~ ~ K(@i; e,; x,y)*h(@l; o,; x,y). (33)
~=1)=1

III. NUMERICAL ASPECTS

A. Description of the Algorithm

In this section, we test the algorithm as it is indicated in

Fig. 6. Using the integral formulation (2), the evaluation of

the diffracted field on a probing line requires first a

knowledge of the total electric field inside the inhomogene-
ity. In order to calculate this field, we have to solve a

Fredholm’s integral equation of the second kind by means

of the method of moments [14], [18]–[22]. This leads us to

the solution of a system of linear equations with rank N

(N representing the total number of elementary cells con-

stituting the object). Cells have to be taken sufficiently

small so that the dielectric constant and the electric field

can be considered constant over each cell. The total field

in the object is obtained after inversion of this system by a

Gauss–Jordan algorithm. The diffracted field can then be

computed for any point in the space by using the ap-

propriate Green’s function. The accuracy of the numerical

Fourier

1) 1-D Fourier Transforms: The first step of the al-

gorithm is to compute the 1-D Fourier transform of the

diffracted field measured in the air at angles 61,, j = 1, NI

and frequencies U,, i =1, N~. The sampled diffracted field

#J~(x), measured at 2N + 1 points with a sampling interval

Ax. can be written as

+N(x)=~N(x)r)(x). (34)

Here, ~(x) denotes the diffracted field for an incidence 61

at a frequency u measured on a probing line of infinite
length situated at yl above the air-soil interface, and

S~(x) is a distribution defined by

SM(X) = “~~ b(fi-m) = “~N Ax8(x–mAx)
~..N ~..N

(35)

where IS(x) denotes the Dirac distribution.

The next step is to take the Fourier transform of *N(x)

so that

~.N

?N(V) = ~ Axrj(rnAx)e-2’”’m’x (36)
~=–N’
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or

~~(v)=Ax~(v)*
sin[rv(2N+l)Ax]

(37)
sin[rvAx] “

Thus, ~~(v) is a periodic function of period l/Ax. In

~rder to avoid problems of aliasing in the computation of

+~(v), we have to sample with

(38)

2) Interpolation in the Fourier Domain: Numerically,

~~(v) is computed by a fast Fourier transform algorithm.

The Fourier plane is filled by methods previously de-

scribed, and the interpolation from the given circular arcs

to the Cartesian grid is realized by the nearest neighbor’s

method. Other methods of interpolation which have been

successfully employed in object reconstruction [15],

[23] -[25] have not yet been used.

3) Inverse 2-D Fourier Transform of &a, /?): If l?( a, ~ )

is sampled with

1 1

‘a= (2 N+1)Ax and ‘P= (2M +l)Ay

the 2-D inverse fast Fourier transform provides a (2N + 1)

X (2M + 1) reconstruction given by

~(x, Y)

‘~(x”) = (2 N+l)(2M+l)AxAy

[

sin(mt\Ax)sin(my/Ay]

1
(39)

* 7rx/(2N+l)Ax7ry/( 2M+l)Ay

where ~(x, y) is defined by (33). To summarize, the two

main sources of error for the inverse problem are the

undersampling of the diffracted field and the insufficient

length of the probing line.

In these simulations, our primary goal is to evaluate the

impulse response of the system, that is, the reconstruction

of K(x, y) = 8(x – x., y – y,) (i.e., a diffracting object

located at ( x,, y,), y.> O). Then we shall examine the more

realistic case of objects embedded in different soils, the

size of which is of the order of the wavelength.
Electromagnetic parameters of soil are dependent on

soil density, water content, frequency, and temperature.

There exist several papers which deal with measurements

of conductivity and dielectric constant of different soils at

microwave frequencies [26]–[28], and some attempt has

been made to model the dielectric behavior of soil–water

mixtures in the microwave region [29]. At 3 GHz, the

relative permittivity c,, increases with soil density, and the

water content varies from 2.55 (dry sand) to approximately

20 (loamy soil, 13.77 percent moisture) [27]. The conduc-
tivity us is very dependent on water content; for the same

soil at 3 GHz, its values are given by us = 2.6x 10-3 S/m

(dry sand) and Uq= 4 X 10-1 S/m (loamy soil). In order to

evaluate signal attenuation in the soil, let us consider the

transmitted portion of the incident plane wave

E;(x, y) = Tei~3(Xsino3+Yc0s03). (40)

Along the y direction, the attenuation A is given by

A = e- Im(k3cos0,)y (41)

with Im ( k3 cos f33) >0. The penetration depth 8 is there-

fore defined as

1
8=

Im(k3cosf?~)

which can be written as

with

where

and

(42)

(43)

(44)

for a plane wave of incidence 61 and circular frequency.

For example, in the case of normal incidence, the penetra-

tion depth in dry sand and loamy soil are, respectively,

8(dry sand) = 3.2 m; t3(10aY,0,1)= 0.06 m.

It appears that the two major difficulties with electro-

magnetic methods are the attenuation in transmission of

microwaves in soil and the deterioration of spatial resolu-

tion when a lower frequency is used to seek lower attenua-

tion.

B. Nun~erical Simulations

1) Point Spread Function of the Reconstruction Process:

Let us consider a point-diffracting object located at (x,, y,)

in a soil characterized by c,3 = 15 and us = 5 X 10-2 S/m.
Our purpose is to evaluate the improvement in the trans-

verse and longitudinal resolution (8X, 8Y) by using meas-

urements performed at different incidence and frequen-

cies. The first simulation is characterized by the following

choices: the frequency is fixed at 3 GHz (Al =10 cm and

the penetration depth for normal incidence is about 40 cm

in this case), and the object is characterized by a dielectric

permitl ivity Cr,= 2.5 and conductivity a,= O S/m. The

diffraction point is buried at a depth y,= Xl (with x,== O)

and the diffracted field is measured on a probing line of

20AI situated at yl = Al above the air-soil interface. In

the case of using an incident field with 25 incidence
regularly distributed between the interval – n/2 and + m/2

(case 1), the magnitude of the image is shown in Fig. 7.

The transversal and longitudinal resolution can be

evaluated as 8X = 0.4XI and 8Y= 5A1.

In order to obtain a quasi-symmetrical resolution along

the x and y directions, we make the incidental frequency

-‘ary. We consider the following example, where frequency
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(c)

Fig. 7. Impulse response of the reconstruction process obtained at 3

GHz in the case of 25 plane waves with incidence in the interval
] – 7r/2, n/2[ (a) Normalized transversal section. (b) Normalized longi-

tudinal section. (c) 3-D representation (8X = 4 cm and ~, = 50 cm).

varies in the range 2.43–3 GHz divided in 20 steps of

Af = 0.03 GHz (incidence is fixed to 81=93= O). The

result of such a simulation is shown in Fig. 8. Resolutions

along the x and y directions are roughly equal, so that

8X= 8Y = 0.6AI (Al denoting here the minimal value of the

wavelength for the frequency range considered). Fig. 9

permits comparison of the half-height sections of the two

images. By combining data obtained from case 1 and case

2 (for every frequency, plane waves with 25 incidence are
used to fill up the Fourier plane), we obtain the image

which is depicted in Fig. 10, with 8X = 0.4AI and SY= 0.6 AI.

A filter can be used in the Fourier plane to reduce the

sidelobes of the spatial impulse response, but this method

generally results in a decrease in resolution [30].

We now evaluate the performance of the algorithm as a

function of object electromagnetic parameters (cv$,u,).

First, consider the case of two diffracting points burled at

the same depth y,l = y,a = 3AI, characterized by the same

electromagnetic parameters c, ~= t, * = 2.5, U,l = cr,z= O

S/m, and separated by a dista~ce of$2A1. The reconstruc-

tion obtained in magnitude is shown in Fig. 11 (a) and 12

(a). The transversal section of the image provides a

1

~“
1 1

/ ““:
I

05 –

0 1 1 1. t [ ( I

●

20 ,

(a)

1 1 I I I t I 1 I 1

05 –

0 I

20A1

(b)

h

(c)

Fig. 8, Impulse response of the reconstruction process in the case of the
normal incidence and a frequency variation from 2.43 GHz to 3 CJHZ.

(a) Normalized transversal section. (b) Normalized longitudinal section.
(c) 3-D representation (8X = $ = 6 cm).

depth

< B

7.5 Al

Fig. 9. Comparison of the half-height sections of I~( x, y) I obtained in
the two previous cases: 1) incidence varies from – 7r/2 to + 7r/2,

frequency is fixed at 3 GHz; 2) frequency varies from 2.43 GHz to 3
GHz in the case of normaf incidence.
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0 1 I I I I I I

20A1
●

(a)

.

:.m
20A1

th

(c)

Fig. 10. Impulse response for an incidence variation from – 77/2 to
+ 7r/2 and a frequency variation from 2.43 GHz to 3 GHz (8X = 4 cm

and ~, = 6 cm).

quantitative evaluation of the reconstructed distance which

separates the two diffracting points. In order to evaluate

the accessible contrast, we now examine the reconstruction

of the two diffracting points with different electromagnetic

characteristics. The two objects are characterized, respec-

tively, by c,,1z 2.5 and c,, = 5, 7, 9, and U,l = O,z = O S/m.

The results are shown in Figs. 11 (b)-(d) and 12 (b)-(d).

2) Object Reconstruction: Our purpose is to evaluate the

capability of the imaging algorithm for reconstructing ob-

jects of different shapes.’ Let us first consider (case 1) a

dielectric rod (6,$ = 2.5, u,= O S/m) buried in a soil char-

acterized by c,, =15, us= 5 x 10-2 S/m. The object is

embedded at a depth of 3Al, and its dimensions along the

x and y directions are Lx= 3A/2 and Ly = AJ1O. The

length of the probing line is 20A1 and it is situated at Al

above the air-soil interface. The frequency of the incident
plane waves varies by steps of 0.03 GHz between 2.43

GHz and 3 GHz; for each frequency, 25 incidence are

used within the interval ] – 7r/2, T/2[ . The magnitude of

the image is shown in Fig. 13 (a) (filtered at half height)

and in Fig. 13 (b). The second rod has the dimensions

Lx= A1/10 and LY = 3A1/2 (rotation of 90° from the

previous case), and it is illuminated with the same il-

2

pth

(b)

2

pth

(c)

(d)

Fig. 11. 3-D representation of IF(x, y) I in the case of two dielectric
objects much smaller than the wavelength with different electromag-
netic parameters buried at the same depth ( Y,I = Y,2 = 30 m). For ~1
cases, Cr, = 2.5, o~l = U,2 = O S/m, and c,,, = 2.5. (a) t.,, = 5. (b) c,,, = 7.

(c) CY, =s9, (d) Frequency varies from 2.73 GHz to 3 GHz and incidence

var%s in the range ] – 7r\2, + n\2[

lumina.tion characteristics. One notes that the obtained

image (see Fig. 13 (b) and (c)) does not square exactly with

the real geometry of the rod. Keeping in mind that the

reconstruction process gives a representation of the polari-

zation currents, illuminated parts of the object (i.e., the

front) will be better reconstructed.
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Fig. 12.

20 Al

(d)

Transversal sections of II?(x, y) I corresponding to the 3-D

representations shown in Fig, 11.

I

4.5 AI 4.5 Al

th

(b) (d)

Fig. 13. Modulus of x(x, y) for a dielectric rod (c,, = 2.5, q = O S/m) parallel ((a) and (b)) and perpendicular ((c) and (d))

to the air-soil interface.
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epth

(a)

11073

pth

(d)

(b) , (e)

(c)

Fig. 14. 3-D representation of II?(x, y) 1obtained in the case of a homogeneous dielectric cylinder (c,, = 3.5, u, = O S/m) of
rectangulw section (IX = 3Al /2, [Y = 0.9A) in the case of two different soils. Case 1:(a), (b), (c) Loamy soil of 13.77-percent

water content (C,3 = 20, Uq= 0.4 S/m). Case 2: (d), (e), (f) Dry sand (e, := 2.55, us = 2 x 10–3 S/m). l?(x, y) is obtained for
(a), (d) a plane wave incidence variation in the intervaf ] – 7r/2, + T/2~ , (b), (e) for a plane wave frequency variation from
2.43 GHz to 3 GHz, and (c), (f) for both incidence and frequency variation.

In the case of the two different soils considered before

—loamy soil of 13.77-percent water content (case 1: 6,, =

20, U3= 0.4 S/m) and dry sand (case 2: c,, = 2.55, D3= 2

X 10-3 S/m) [27]—the object is a homogeneous rectangu-

lar cylinder with dimensions Lx= 3A1/2 and Ly = 0.9A1,

characterized by c,, = 3.5 and us = O S/m and buried at a

depth D = 3A1. The length of the probing line is 20A1, and
it is situated at a distance yl = Al above the air–soil

interface. Fig. 14 shows the reconstructed object in the two

cases of loamy soil (Fig. 14 (a);(c)) and dry sand (Fig. 14

(d)-(~).

The three representations of l~(x, y) I are for a vari

ation of the plane wave incidence in the interval

1– T/2, + TT/2[with Ael= 7r/35 (Figs. 14 (a) and (d)), for
a variation of the plane wave frequency from 2.43 GHz to

3 GHz with Af = 0.03 GHz, and for both incidence and

frequency variation of the incident plane wave (Fig. 14 (e)

and (f)). Fig. 15 shows the same results in magnitude

filtered at half height (the images of Il?(x, y) I being

represented with five highest levels over ten levels and with

a relative maximum for each figure), and the geometry of

the real object is drawn in dashed line. It is obvious that

the object is best reconstructed when it is embedded in the

dry sand because of the refraction of the plane wave at the

air-soii interface; the incidence variation in case 2 pro-

vides more information about the shape of the object than
in case 1. The difference between Fig. 14 (c) and (f) or Fig.

15 (c) and (f) could be explained from two factors. First,

since the permittivity of the loamy soil is more important

than that of the sandy soil, the information in the spectral

domain for the loamy soil is more reduced and concerns

higher spatial frequencies (see (28)) and the image reflects

the discontinuities of the object along the y axis. Second,

the conductivity of the loamy soil is higher than that of the

sandy soil; the working frequency (2.43–3 GHz band) is

such that the first soil–object interface is well depicted,

whereas the second is not retrieved. It would be necessary

to use lower frequencies for the loamy soil.
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(a)

(b)

11w5 2,5;
3-

(d)

(e)

Fig. 15. 2-D representation of Ii?(x, y) ] filtered at half height corresponding to the same cases as in Fig. 14(5 highest levels

among 10 levels).

IV. CONCLUSIONS

Using the integral formulation of the diffracted field

presented in this paper, we are able to estimate the electro-

magnetic response of a two-dimensional inhomogeneity

buried in the earth for a plane wave excitation. We have

also shown how algorithms employed in diffraction tomog-

raphy can be applied to obtain images of buried objects.

Simulations concerning the shape and the size of the object

have been carried out for different values of soil electro-

magnetic parameters. The image is given by the map of

Ii(x, y) I represented by means ~f 3-D plots. However,

images based upon the phase of K(x$ y) (which needs to

be unwrapped) could also be considered, for they might

provide complementary information on the target. We

have avoided discussing a number of details that must be

taken into account in practical applications, such as the

effect of a layer (water, ice, snow, etc.) and the effect of

noise on the image quality.

Some of the problems to be solved in the future are the

separation of the information concerning the object from

soil surface reflections; the effect of noise and of a strati-
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fied ground on image quality; and the application of this

method in a three-dimensional problem.

APPENDIX

A line source is located at a point (x’, y’) with y’> O in

a soil characterized by c,,, U3; (x, y) denotes the Observa-

tion point where the field must be evaluated. The Green’s

function satisfies

AXYG(X, y; X’, y’)+ k:G(x, y; X’, y’) = O, (Y<o)

AXYG(X, y;x’, y’)+ kiG(x, y;x’, y’)

=–8(X–X’, y–y’), (y> O) (Al)

where 8(x, y) denotes the bidimensional Dirac distribu-

tion centered at (O,O) and AX. is a scalar Laplacian

operator defined by

d2 a2
AXY=— —

r?x2 + 13yz”

Let g(v, y;x’, y) be the Fourier transform of G(x, y;x’, y’)

with respect to x. Thus

G(x, y;x’, y’) =~+mg(v, y;x’, y’)e2i’’’Xdv (A2)
—cc

is the system (Al) is equivalent to

a Zg
—+~~g=O (fory>O)
ayz

a2g

—+~jg=–il(y– y’)e-2’””x’
ayz

(for y< O) (A3)

with

~;= k; –4~2V29 j=l,3.

Solutions of system (A2) are given by

g=~le-%~ (for y <O)

g = A3e’$’3y + B3e-%J’ (for O < y < y’)

g = A4ei73Y (for y> y’). (A4)

Bl, As, B3, Aa are given by the boundary conditions:

1) continuity of g for y = O and y = y’;

2) continuity of 8g/dy for y = O; and

3) discontinuity of 8g/dy for y = y’.

Thus,

(?g ag = e2imvx’——
ay y+y’+ ay Y+y ,. “

(A5)

These boundary conditions are determined by the follow-

ing relation:

f “= {f “} + i %p(x-%)+ %fux -%) (w
i=l

between the second derivative t~en in the distribution

sense f” and the second derivative taken in the function

sense {f” } for a function ~ which admits finite discon-

tinuities at points xi (Z= 1,..., n), where u,, and rrif, are

given by

01, = f(x,+ ) – f (xi)

CJ,f, = f’(x:)- f’(xi)

and 8(x – x,), 8‘( x – xl) and f‘ denote, respectively, the

Dirac distribution centered at x,, its first derivative, and

the first derivative off.

Solving the boundary conditions, one obtains

B3 = :e%Y’e-21rvx’

2y3

and finally

(for y <O)

“[ (73- k) ~iy,(y+,,,,

g(v, y;x’, y’) = +- e’731y-y’1+
2y3 (73 +%) 1

.e-2i’”x’ (for y > O) (A8)

which yields G(x, y; x’, y’) upon substitution of (A8) into

(A2).
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